1 (i)	$\mathrm{X} \sim \mathrm{B}(18,0.1)$ (A) $\quad \mathrm{P}(2$ faulty tiles $)=\binom{18}{2} \times 0.1^{2} \times 0.9^{16}=0.2835$ OR from tables $0.7338-0.4503=0.2835$ (B) P (More than 2 faulty tiles $)=1-0.7338=0.2662$	M1 $0.1^{2} \times 0.9^{16}$ M1 $\binom{18}{2} \times p^{2} q^{16}$ A1 CAO OR: M2 for 0.7338 - 0.4503 A1 CAO M1 $\mathrm{P}(X \leq 2)$ M1 dep for $1-\mathrm{P}(\mathrm{X} \leq 2)$ A1 CAO	3 3
	(C) $\mathrm{E}(X)=n p=18 \times 0.1=1.8$	M1 for product 18×0.1 A1 CAO	2
(ii)	(A) Let $p=$ probability that a randomly selected tile is faulty $\begin{aligned} & \mathrm{H}_{0}: p=0.1 \\ & \mathrm{H}_{1}: p>0.1 \end{aligned}$	B1 for definition of p in context B1 for H_{0} B1 for H_{1}	3
	(B) $\quad{ }_{1}$ has this form as the manufacturer believes that the number of faulty tiles may increase.	E1	1
(iii)	$\begin{aligned} & \text { Let } X \sim \mathrm{~B}(18,0.1) \\ & \mathrm{P}(X \geq 4)=1-\mathrm{P}(X \leq 3)=1-0.9018=0.0982>5 \% \\ & \mathrm{P}(X \geq 5)=1-\mathrm{P}(X \leq 4)=1-0.9718=0.0282<5 \% \end{aligned}$ So critical region is $\{5,6,7,8,9,10,11,12,13,14,15,16,17,18\}$	B1 for 0.0982 B1 for 0.0282 M1 for at least one comparison with 5\% A1 CAO for critical region dep on M1 and at least one B1	4
(iv)	4 does not lie in the critical region, (so there is insufficient evidence to reject the null hypothesis and we conclude that there is not enough evidence to suggest that the number of faulty tiles has increased.	M1 for comparison A1 for conclusion in context	2
		TOTAL	18

2	(i)	$\mathrm{P}(20$ correct $)=\binom{30}{20} \times 0.6^{20} \times 0.4^{10}=0.1152$	M1 $\quad 0.6^{20} \times 0.4^{10}$ M1 $\binom{30}{20} \times p^{20} q^{10}$ A1 CAO	[3]
	(ii)	Expected number $=100 \times 0.1152=11.52$	M1 A1 FT (Must not round to whole number)	[2]
			TOTAL	[5]

3 (i)	$\begin{aligned} & \text { Median }=3370 \\ & \mathrm{Q}_{1}=3050 \quad \mathrm{Q}_{3}=3700 \\ & \text { Inter-quartile range }=3700-3050=650 \end{aligned}$	B1 B1 for Q_{3} or Q_{1} B1 for IQR	3
(ii)	Lower limit 3050-1.5 $\times 650=2075$ Upper limit $3700+1.5 \times 650=4675$ Approx 40 babies below 2075 and 5 above 4675 so total 45	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { M1 (for either) } \\ & \text { A1 } \end{aligned}$	4
(iii)	Decision based on convincing argument: eg 'no, because there is nothing to suggest that they are not genuine data items and these data may influence health care provision'	E2 for convincing argument	2
(iv)	All babies below 2600 grams in weight	B2 CAO	2
(v)	(A) $\begin{aligned} & X \sim B(17,0.12) \\ & P(X=2)=\binom{17}{2} \times 0.12^{2} \times 0.88^{15}=0.2878 \end{aligned}$ $\text { (B) } \quad \begin{aligned} & \mathrm{P}(X>2) \\ & =1-\left(0.2878+\binom{17}{1} \times 0.12 \times 0.88^{16}+0.8^{17}\right) \\ & =1-(0.2878+0.2638+0.1138)=0.335 \end{aligned}$	$\text { M1 }\binom{17}{2} \times p^{2} \times q^{15}$ M1 indep $0.12^{2} \times 0.88^{15}$ A1 CAO M 1 for $\mathrm{P}(X=1)+P(X=0)$ M1 for $1-P(X \leq 2)$ A1 CAO	3
			3
(vi)	Expected number of occasions is 33.5	B1 FT	1
		TOTAL	18

4 (i)	(A) $\quad \mathrm{P}($ both $)=\left(\frac{2}{3}\right)^{2}=\frac{4}{9}$ (B) $\quad \mathrm{P}($ one $)=2 \times \frac{2}{3} \times \frac{1}{3}=\frac{4}{9}$ (C) $\quad \mathrm{P}$ (neither) $=\left(\frac{1}{3}\right)^{2}=\frac{1}{9}$	B1 CAO B1 CAO B1 CAO	3
(ii)	Independence necessary because otherwise, the probability of one seed germinating would change according to whether or not the other one germinates. May not be valid as the two seeds would have similar growing conditions eg temperature, moisture, etc. NB Allow valid alternatives	E1 E1	2
(iii)	$\begin{aligned} & \text { Expected number }=2 \times \frac{2}{3}=\frac{4}{3}(=1.33) \\ & E\left(X^{2}\right)=0 \times \frac{1}{9}+1 \times \frac{4}{9}+4 \times \frac{4}{9}=\frac{20}{9} \\ & \operatorname{Var}(X)=\frac{20}{9}-\left(\frac{4}{3}\right)^{2}=\frac{4}{9}=0.444 \end{aligned}$ NB use of npq scores M1 for product, A1CAO	B1 FT M1 for $E\left(X^{2}\right)$ A1 CAO	3
(iv)	Expect $200 \times \frac{8}{9}=177.8$ plants So expect $0.85 \times 177.8=151$ onions	M1 for $200 \times \frac{8}{9}$ M1 dep for $\times 0.85$ A1 CAO	3
(v)	Let $X \sim \mathrm{~B}(18, p)$ Let $p=$ probability of germination (for population) $\mathrm{H}_{0}: p=0.90$ $\mathrm{H}_{1}: p<0.90$ $\mathrm{P}(X \leq 14)=0.0982>5 \%$ So not enough evidence to reject H_{0} Conclude that there is not enough evidence to indicate that the germination rate is below 90%. Note: use of critical region method scores M1 for region $\{0,1,2, \ldots, 13\}$ M1 for 14 does not lie in critical region then A1 E1 as per scheme	B1 for definition of p B1 for H_{0} B1 for H_{1} M1 for probability M1 dep for comparison A1 E1 for conclusion in context	7
		TOTAL	18

